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Abstract
Background Hemodynamic patterns have been associated with cerebral aneurysm instability. For patient-specific computational
fluid dynamics (CFD) simulations, the inflow rates of a patient are typically not known. The aim of this study was to analyze the
influence of inter- and intra-patient variations of cerebral blood flow on the computed hemodynamics through CFD simulations
and to incorporate these variations into statistical models for aneurysm rupture prediction.
Methods Image data of 1820 aneurysms were used for patient-specific steady CFD simulations with nine different inflow rates
per case, capturing inter- and intra-patient flow variations. Based on the computed flow fields, 17 hemodynamic parameters were
calculated and compared for the different flow conditions. Next, statistical models for aneurysm rupture were trained in 1571 of
the aneurysms including hemodynamic parameters capturing the flow variations either by defining hemodynamic “response
variables” (model A) or repeatedly randomly selecting flow conditions by patients (model B) as well as morphological and
patient-specific variables. Both models were evaluated in the remaining 249 cases.
Results All hemodynamic parameters were significantly different for the varying flow conditions (p < 0.001). Both the flow-
independent “response” model A and the flow-dependent model B performed well with areas under the receiver operating
characteristic curve of 0.8182 and 0.8174 ± 0.0045, respectively.
Conclusions The influence of inter- and intra-patient flow variations on computed hemodynamics can be taken into account in
multivariate aneurysm rupture prediction models achieving a good predictive performance. Such models can be applied to CFD
data independent of the specific inflow boundary conditions.
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Introduction

Cerebral aneurysm rupture leading to subarachnoid hemor-
rhage is associated with high morbidity, mortality, and a large
economic burden [18, 22]. To prevent a future rupture of an
unruptured aneurysm, different treatment options exist.
However, the risks that are associated with endovascular or
surgical treatment and its complications typically outweigh
the natural aneurysm rupture risk of—on average—about
1% per patient and year [13, 23]. Consequently, treatment
decisions of incidental aneurysms, which are diagnosed more
frequently due to an increased use of medical imaging tech-
nologies [12], are challenging.

For improved treatment decisions, a thorough understand-
ing of the mechanisms leading to aneurysm growth and rup-
ture is necessary. While a plethora of risk factors have been
suggested in previous studies [14], these mechanisms are not
yet fully understood. Hemodynamics are believed to play an
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important role through biomechanical signaling mechanisms
[2]. A statistical model based on different risk factors could
potentially be used to assist physicians in their treatment de-
cisions. However, the models that include hemodynamic pa-
rameters are typically based on relatively small sample sizes
of less than 250 cases and have not been externally evaluated
so that they are limited in their applicability to other than the
populations that were used for model development [1, 26].
Furthermore, boundary conditions to determine the hemody-
namics are generally unknown for the very patient so that
instead generic models are applied and the variability of pa-
tient flow is often simply disregarded.

We recently developed an aneurysm rupture probability
model based on a large data set of 1631 aneurysms that
achieved a good performance both in its internal validation
and external validation with 249 cases of patients from two
different patient cohorts [6, 7]. The model included morpho-
logical, patient-related, anatomical, and hemodynamic vari-
ables. For characterizing an aneurysm’s hemodynamic envi-
ronment, patient-specific computational fluid dynamics
(CFD) simulations were performed based on 3D images.
While the images are fully patient-specific, inflow and out-
flow boundary conditions for the CFD simulations are typi-
cally not available so that flows obtained from other subjects
are generally used. For the model [6], we scaled these flows to
a patient’s specific area of the vessel where the boundary
conditions were imposed using an empirical law derived from
PC-MR measurements obtained in healthy subjects. Yet, the
patient’s specific inflow could vary from these flow condi-
tions. Furthermore, even if patient-specific measurements are
available, the flow conditions change over the course of a day,
e.g., due to exercise [21], which is not taken into account by
one-time measurements.

The aim of this study was therefore an assessment of the
influence of altered inflow conditions of the CFD simulations
on the computed hemodynamics and the development of a
strategy for incorporating these flow-dependencies into a mul-
tivariate statistical model for rupture prediction that is robust
with respect to inflow variabilities. For this purpose, flow
variations were divided into inter- and intra-patient variations,
of which the range was defined based on flow measurements
in patients and healthy subjects [10, 11, 21].

Methods

Patient and image data

For this study, cross-sectional data of 1820 cerebral aneu-
rysms (543 ruptured) in 1245 patients were used. Data includ-
ed patient information as well as three-dimensional rotational
angiography (3DRA) images of the cerebral vasculature.
Consistent with our previous studies, data of 1571 aneurysms,

which had been obtained from hospitals located mainly in the
USA, were used for model training (a subset of the data used
in [6]) and data of 249 aneurysms of two European hospitals
for model evaluation (see [7] for details). An overview of both
patient populations is given in Table 1.

Flow data

To define a range of inflow boundary conditions, we used data
from flow measurements in patients and healthy volunteers.
For the internal carotid artery (ICA), we used Doppler ultra-
sound data of measurements in 136 older patients (patients
without cerebral aneurysms) from Durka et al. [10] and 2D
cine phase-contrast (PC) magnetic resonance imaging (MRI)
data of 17 healthy volunteers from Ford et al. [11] (see Fig. 1,
left). To these data, we fitted a curve describing the area (A) –
flow (Q) relationship with Q = kAn, resulting in values of
kICA = 14.90 and nICA = 0.85. Based on this mean flow, next,
a possible “inter-patient” range was defined by adding and
subtracting a standard-deviation (also based on a fit) to this
mean flow. The “inter-patient” mean flow and defined range
relative to the ICA’s cross-sectional area are shown in Fig. 1
by solid and dotted lines, respectively.

For the vertebral artery (VA), we used the PC-MRI data of
Ford et al. [11] measured in VAs of the same 17 subjects (see
Fig. 1, right). As for the ICA, we fitted a flow-area relationship
resulting in values of kVA = 31.96 and nVA = 1.64. The range
was then chosen by adding and subtracting a percentage based
on the mean and standard deviations for the measured flows
reported in [11] to/from the fitted mean flow1 (dotted lines in
Fig. 1, right).

Hemodynamic modeling

For characterizing an aneurysm’s hemodynamic environment,
steady-state CFD simulations were performed since it has pre-
viously been shown for several hemodynamic variables that
their values averaged over the cardiac cycle (e.g., mean wall
shear stress (WSS)) can be approximated using steady-state
simulations [16]. For the CFD simulations, the aneurysm and
surrounding vasculature were segmented from the 3DRA im-
age with a threshold-based approach. Next, computational
meshes with a maximum element size of 0.02 cm were auto-
matically generated for numerically solving the steady incom-
pressible Navier-Stokes equations with an in-house finite ele-
ment solver. Blood was modeled as a Newtonian fluid with a
density of 1.0 g/cm3 and a viscosity of 0.04 Poise. Details of
the solver and generation of the computational models can be
found in [3, 6].

1 The flow range for the VAwas defined as ΔQ ¼ Qmean fitted � Qmean fitted
Qsd
Qmean

, with Qsd and Qmean as reported in [11] and Qmean _ fitted the flow
fitted based on the relationship Q = 31.96A1.64
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Inflow boundary conditions were imposed at the ICA for
aneurysms located at the anterior circulation, at the VA for
posterior circulation aneurysms, and at more distal vessels if
the ICA or VA were not visible in the 3DRA image. For
defining the inflow rate, we first selected a range of possible
flow rates depending on the inflow vessel cross-sectional area
based on flow measurements in human subjects described
above (“inter-patient range”). From such defined area-
dependent inter-patient flow ranges, three flow rates were se-
lected (mean, minimum, and maximum values, see Fig. 1 in
the Online Suppl. Material for examples). Next, for each of
these three “baseline”-flows, an intra-patient flow range was
specified. Based on measurements of Sato et al. [21], the flow
rate in the ICA increases to up to 18.4% for a medium to high
level of exercise; for the VA, the increase was reported with
39.5%. Thus, for each baseline-flow, two additional flow rates
were selected based on an increase of 9.2% and 18.4% (ICA)
and 18.75% and 39.5% (VA). Figure 2 illustrates the resulting
nine flow conditions: three baseline-flows resulting from the
inter-patient variations flow rate and for each of them two
additional flow rates given by changes of the blood flow in
the ICA/VAwithin the patient (due to exercise).

For imposing boundary conditions at arteries other than the
ICA or VA, the area of the ICA (or VA) was estimated to apply
the area-flow relationships described above, before imposing
a certain percentage of the ICA-/VA-flow as inflows for the
selected artery.

Outlet boundary conditions were imposed as pressure and
flow outlets, where the flows were based on flow division
related to the area of the outlets by a power law.

Definition of hemodynamic parameters

Based on the computed flow fields for each of the nine CFD
simulations, 17 hemodynamic parameters were computed to
characterize the flows in terms of complexity, surface forces,
and flow concentration. Table 2 lists the 17 parameters; details
can be found in [6] and the references therein. For each he-
modynamic parameter, we defined three types of variables
illustrated in Fig. 2: First, we considered the three baseline
values as one flow-dependent variable. Second, we were in-
terested in capturing the “response” of a hemodynamic param-
eter for intra-patient flow variations. For this purpose, we
fitted linear models to the three computed “intra-patient” flow
values and then calculated the average of the three fitted
slopes (m1, m2, m3 in Fig. 2) as the “mean response.”
Finally, to characterize the deviation from a perfectly linear
flow-parameter relationship over the whole range of inter- and
intra-patient flows, R2 of a linear fit to the nine points (light
green line in Fig. 2) was computed and considered as the third
type of hemodynamic variable (“response linearity”). For a
perfectly linear relation, R2 would take a value of one since
a linear line could be fitted without any errors to the flow-
parameter data, whereas for non-linear relations, R2 would
be less than one.

Statistical analysis and modeling

First, we assessed the changes of hemodynamic variables for
the three different (baseline) flow conditions by a paired
Wilcoxon test using the data of all 1820 aneurysms.

Table 1 Description of patient
populations of data used for
model training and evaluation

Training data Test data

Number of patients 1042 203

Gender 790 F, 252 M 144 F, 59 M

Age (mean ± sd) 56.26 ± 13.78 54.68 ± 13.61

Number of aneurysms (ruptured/unruptured) 1571 (477 R, 1094 U) 249 (66 R, 183 U)

Patients with multiple aneurysms 327 35

Distribution by location ACA 54 (3.44%)

20R/34 U

5 (2.00%)

2R/3 U

ACOM 214 (13.62%)

140R/74 U

45 (18.07%)

23R/22 U

BA 104 (0.07%)

35R/69 U

14 (5.62%)

7R/7 U

ICA 612 (38.96%)

61R/551 U

77 (30.92%)

5R/72 U

MCA 304 (19.35%)

82R/222 U

71 (28.51%)

14R/57 U

PCOM 247 (15.72%)

123R/124 U

33 (13.25%)

14R/57 U

VA 36 (2.29%)

16R/20 U

4 (1.61%)

1R/3 U
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Next, we aimed at developing statistical models for rupture
prediction including morphological, patient-related, and ana-
tomical information as well as hemodynamic parameters tak-
ing the variations due to differences in flow-conditions into
account. Morphological parameters were obtained based on

automated shape characterizations of each aneurysm (see [6]
and references therein) and are shown in Table 2.
Furthermore, we included patient gender and age as well as
aneurysm location in the cerebral vasculature as features.

To incorporate the flow variations of the hemodynamic
parameters into the models, we implemented two alternative
approaches. First, we trained a model that captured the re-
sponse of the parameters (by including the “mean response”
and “linearity” variables) and thus were by-definition flow-
independent (model A, all included variables are shown in
Table 2). Second, we trained models including the flow-
dependent hemodynamic baseline variables randomly
selecting the patient’s flow conditions. The second approach
was repeated 120 times so that in total 120 flow-dependent
models were trained (models B).

All the models were trained on the data of the 1571 training
aneurysms using logistic group lasso regression [15], where
the regularization parameter was selected based on tenfold
cross-validation. Lasso regression has the advantage of
allowing for variable selection since—depending on the mag-
nitude of the tuning parameter—coefficients of certain vari-
ables are set to zero so that these variables drop out of the
model.

Model evaluation

All the models were evaluated in terms of area under the
receiver operating characteristic curve (AUC) when applying
the models to the 249 test cases. For models B, the flow
condition in the test data was again randomly chosen by pa-
tient. Confidence intervals of the AUCs were determined
based on the asymptotically exact method of DeLong et al.
[5] implemented in the pROC R-package [19].

We further compared the predicted probabilities and rup-
ture status classification for the 120 fitted models B when
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Fig. 2 Schematic illustrations of flow variables defined for each
hemodynamic parameter. Based on the nine CFD simulations for nine
different inflow boundary conditions (blue dots), “mean responses” were
defined as the mean of the slopes m1, m2, m3 of the three fitted lines to
capture the response of the hemodynamic parameter to intra-patient flow
variations. To characterize the deviation from a perfectly linear flow-
parameter relationship over the whole range of inter- and intra-patient
flows, R2 of a linear fit to the nine points (light green line) was computed.
For the flow-dependent hemodynamic parameters (for models B), the
baseline values from each of the three inter-patient variations were used
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Fig. 1 Flowmeasurement data obtained fromDurka et al. [10] and Ford et al. [11] for the ICA (left) and from Ford et al. [11] for the VA (right). The solid
line represents the flow-area relationship fitted to the data. The dotted lines depict the defined range for inter-patient variations



Table 2 Definitions of variables included in the models and coefficients for the fitted flow-independent model (model A). The column “response”
refers for the hemodynamic to the type of response-variable (see Fig. 2)

Variable Type Definition Response Coefficient

Age Patient Patient age / − 0.0180
Sex F Patient Female patient / − 0.1869
Sex M Patient Male patient / 0.1869

Avol Shape Aneurysm volume / 0

Asize Shape Aneurysm size =max. distance between any two points on the aneurysm surface / 0

Aarea Shape Aneurysm area / 0

Nsize Shape Max. distance between any two points on the neck surface / 0

Narea Shape Area of the neck surface / − 0.4993
Depth Shape Max. distance of all points on aneurysm dome from aneurysm neck / 0

AR Shape Aspect ratio = aneurysm depth/neck diameter / 0

Aheight Shape Max. normal distance of all points on aneurysm dome from aneurysm neck / 0

Awidth Shape Max. diameter of aneurysm slices parallel to aneurysm neck / − 1.1558
HWR Shape Height to width ratio = aneurysm height/aneurysm width / 0.3583

Ndiam Shape Equivalent diameter of neck = 4*area/perimeter / 0

Aspect Shape Aspect ratio 2 = aneurysm height/neck diameter / 0

BF Shape Bottle neck factor = aneurysm width/neck diameter / 0

BL Shape Bulge location = distance of plane with largest diameter from neck/height / 0.1624

Vdiam Shape Vessel diameter: diameter of nearest vessel from aneurysm neck / − 1.714
SizeR Shape Size ratio = aneurysm size/vessel diameter / 0

VOR Shape Volume to ostium ratio = aneurysm volume/area of neck / − 0.0841
CR Shape Convexity ratio = aneurysm volume/volume of aneurysm’s convex hull / 0

IPR Shape Isoperimetric ratio / 0

EI Shape Ellipticity index / 0

NSI Shape Non-sphericity index / 5.4401

GAA Shape Area-weighted average of Gaussian aneurysm surface curvature / − 0.0050
MAA Shape Area-weighted average of mean curvature / 0

GLN Shape L2-norm of Gaussian curvature / 0

MLN Shape L2-norm of mean aneurysm surface curvature / 6.3289

ICI Hemod. Inflow concentration index Linearity − 0.0068
Mean 0.2211

Q Hemod. Mean inflow rate into aneurysm Linearity − 1.0297
Mean 0

KE Hemod. Mean kinetic energy Linearity 0

Mean 0.0004

SR Hemod. Mean shear rate Linearity 0

Mean 0

VE Hemod. Mean velocity Linearity 0

Mean 0

VO Hemod. Mean vorticity Linearity 0

Mean 0

VD Hemod. Mean viscous dissipation Linearity 0

Mean 0

WSSmax Hemod. Maximum wall shear stress Linearity 0

Mean 0

WSSmin Hemod. Minimum wall shear stress Linearity − 0.2260
Mean 0

WSSmean Hemod. Mean wall shear stress Linearity 0

Mean 0
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holding the inflow constant (medium inflow rate) as well as
for one representative model of models B with varied inflow
boundary conditions. For classification of an aneurysm as
ruptured, three different probability thresholds of 0.3, 0.5,
and 0.7 were applied.

All statistical analyses were performed with code written in
the R-language [17].

Results

All hemodynamic variables changed significantly for the dif-
ferent flow conditions (p < 0.001 for all variables). As expect-
ed, variables that increased in value for increasing inflows
included inflow into the aneurysm, inflow concentration, ki-
netic energy, shear rate, mean and maximum velocity, viscous
dissipation, vorticity, vortex core line length (corelen), and all
wall shear stress parameters except for the low shear area
(LSA), which significantly decreased for increasing flows.
Figure 3 shows the boxplots of the values for the different

flow conditions for four variables as examples. The mean
values for all variables for the different flow conditions are
shown in Table 1 in the Online Suppl. Material.

The model based on hemodynamic response variables (i.e.,
independent from inflow boundary conditions choice) com-
bined with morphological, patient-related and aneurysm infor-
mation (model A) achieved an AUC of 0.8182 in the test data
(CI [0.7607–0.8756]). For the 120 fitted models based on
repeated random selection of the inflow condition (flow-
dependent model B) and evaluated with randomly picking
inflow conditions in the test data, the mean AUC was similar
with 0.8174 (standard deviation of 0.0045). The performances
of the two models were slightly reduced compared to their
performance in the training data, where they had AUCs of
0.8536, CI [0.8328–0.8743], for model A and 0.8515 ±
0.0021 for model B.

Variables that were retained in the process of model fitting
for model Awere patient age and gender, aneurysm location,
as well as nine morphological variables, nine hemodynamic
parameters characterizing the behavior of the response in

Table 2 (continued)

Variable Type Definition Response Coefficient

LSA Hemod. Low shear area Linearity − 0.3474
Mean 0

SCI Hemod. Shear concentration index Linearity − 0.1698
Mean 0

WSSves Hemod. Mean wall shear stress in parent vessel Linearity 13.7839

Mean 0.0056

WSSnorm Hemod. Normalized WSS =WSSmean/WSSves Linearity 0

Mean 0

MWSSnorm Hemod. Maximum normalized WSS =WSSmax/WSSves Linearity − 0.0165
Mean 0.0104

Corelen Hemod. Vortex core line length (characterizes flow complexity) Linearity 0.1294

Mean 0

Vmax Hemod. Peak velocity Linearity 0

Mean 0.0010

Position ACA Location Anterior cerebral artery / 0.3429

Position ACOM Location Anterior communicating artery / 1.2983

Position BA-DIST-PROX Location Basilar artery other than tip / − 0.1379
Position BA-TIP Location Tip of basilar artery / 0.4223

Position ICA-ACHOR Location Internal carotid artery – anterior choroidal / − 0.3199
Position ICA-BIF Location Internal carotid artery bifurcation / − 0.3582
Position ICA-CAV Location Cavernous internal carotid artery / − 1.1614
Position ICA-OPH Location Internal carotid artery – ophthalmic / − 0.7665
Position ICA-SHYP Location Superior hypophyseal segment internal carotid artery / − 0.1910
Position MCA-BIF Location Middle cerebral artery bifurcation / 0.1154

Position MCA-DIST-PROX Location Middle cerebral artery other than bifurcation / − 0.8805
Position PCOM Location Posterior communicating artery / 0.9078

Position VA Location Vertebral artery / 0.7287
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terms of deviation from a perfectly linear change, and five
mean response hemodynamic variables (see Table 2). For
the 120 variations of model B, the variables that were most
frequently retained (included in > = 95% of the models) were
patient age and gender, aneurysm location, aneurysm neck
area, width, height-to-width ratio, bulge-location, parent ves-
sel diameter, volume-to-ostium ratio, non-sphericity index,
Gaussian and mean surface curvatures, as well as the three
hemodynamic parameters maximum velocity, LSA, and in-
flow concentration.

When comparing the predictions of the 120 models B for
the test data and medium inflow boundary conditions, the
maximum difference of probabilities between any two of the
120 models ranged in the test data between 0.01 (probabilities
of 0.018 and 0.0313 for that case) and 0.26 (probabilities of
0.091 and 0.349). The average range was 0.08 ± 0.05. Figure 4
shows the ranges of predicted probabilities for all aneurysms
from the test data. The majority of the cases (95% confidence
interval (CI)) had a range of predicted probabilities of < 0.19.
Boxplots of predicted probabilities for the different models as

well as different inflow boundary conditions of the two cases
with the smallest and largest change in predicted probabilities,
respectively, are shown in Fig. 5. In the training data, the
average range for the different models was similar (0.08 ±
0.05).While in the most extreme case, the probabilities ranged
between 0.002 and 0.69, for the majority of the training cases
(95% CI), the range in predicted probabilities was, similar to
the test data, < 0.2. Figures 3 and 4 in the Suppl. Material
show the ranges of predicted probabilities as well as boxplots
of probabilities for the two training cases with largest and
smallest changes in probabilities for the different models.

When considering the minimum and maximum predicted
probability of the different models for each case, the predicted
rupture status based on classification thresholds of 0.3, 0.5,
and 0.7, changed for 28 (11.24%), 25 (10.04%), and 14
(5.62%) test cases (see Table 3).

With respect to the influence of the boundary conditions on
the predicted probabilities, the mean andmaximum change for
low vs. high inflows (when selecting one of the 120 models
for this analysis), were 0.02 ± 0.02 and 0.09, respectively. For

Acta Neurochir (2020) 162:553–566 559
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values are shown in cm, for the mean velocity (VE) in cm/s



thresholds of 0.3, 0.5, and 0.7, the predictions changed for 12
(4.82%), 10 (4.02%), and 2 (0.8%) cases depending on the
inflow boundary condition (see Table 3).

Discussion

A common critique of aneurysm risk assessment studies based
on hemodynamics is the use of boundary conditions for the
CFD simulations that are not patient-specific. Our results
show that although—as one would expect—the hemodynam-
ic parameters change significantly for altered flow conditions,
the predictions of a multivariate model are overall accurate
and comparable independent of the specific flow condition
used for model training or model evaluation. Furthermore, a
similarly good predictive performance can be achieved when
using flow-independent hemodynamic variables that

characterize the response of the variable with respect to altered
flow conditions due to normal diurnal changes in a patient’s
flows.

Hemodynamic parameters change with inflow
conditions

We found that all hemodynamic parameters changed signifi-
cantly for altered inflow rates (within the inter-subject vari-
ability range). Previously, Morales et al. [16] found an in-
crease of aneurysm mean and maximum wall shear stress as
well as pressure for increasing flow rates for unsteady CFD
simulations, which is consistent with our results. Whereas in
[16], only the effect of inflow rate was assessed while keeping
the inflow wave form constant, other studies have evaluated
the influence of wave form variations and found significant
changes of magnitudes of oscillatory shear index (OSI) [20,
24]. Since we performed steady simulations neglecting the

Fig. 4 Mid points vs. 0.5 × length
of intervals of predicted
probabilities from models B for
all cases from the test data
(interval range = value on x-axis
± value on y-axis). The solid,
dashed, and dotted lines indicate
the 0.9, 0.95, and 0.99 confidence
interval (CI) of half of the interval
length, respectively. For most of
the test cases (95% CI), the range
of predicted probabilities was <
0.19

Fig. 5 Boxplots of the predicted probabilities frommodels B for different
flow conditions for two example cases from the test data with minimum
(left) and maximum (right) ranges of predicted probabilities for the 120

models B. The flows of the two cases are illustrated in Fig. 7 (smallest
range, case b, unruptured), and Fig. 2 in the Online Suppl. Material
(largest range, case e, unruptured)
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pulsatile character of blood flow, assessment of the influence
of flow waveforms on the computed parameters was not part
of this study.

To define possible flow ranges for each CFD simulation,
we used ranges of patient data taken from the literature. For
imposing boundary conditions at the ICA, the majority of flow
data were obtained from older patients (mean age of 73 ±
13 years) [10]. Thus, for younger, healthy subjects, different
flow-area relationships might have been observed. At the
same time, measurements from an older patient cohort are
likely more representative than data from younger subjects
for aneurysm patients (with mean ages of 55 and 56 years in
our two cohorts). With respect to intra-patient flow variations,
we used reported data for flow measurements under exercise.
In practice, a patient’s variation of cerebral blood flow during
the day is more complex and also influenced by the cerebral
autoregulation. While our model of inter- and intra-patient
flow variations is thus based on simplifications, it provides
an approach for addressing the problem of uncertainty in in-
flow boundary conditions for CFD simulations and the
resulting computed hemodynamics.

Models that are robust with respect to inflow
conditions achieve good predictive performance

The two trained models were able to discriminate well be-
tween ruptured and unruptured aneurysms with (mean)
AUCs of 0.82 for both the flow-dependent “random” and
flow-independent “response” model. The performance of
these two models was thus similar to the one of a previously
developed rupture probability model, where the hemodynam-
ic parameters had been obtained by unsteady CFD simulations
for one fixed inflow condition (although scaled with respect to
the area of the inlet vessel) [6]. Despite a similar overall per-
formance of the three models, the predictions for a single
aneurysm could vary for each of them. Therefore, we also
compared the discriminatory abilities of the three models for
each aneurysm by computing an “individual AUC” (iAUC)
for each case. The iAUC was defined for ruptured aneurysms
as the relative number of unruptured aneurysms that had a
lower assigned probability of being ruptured than the

considered ruptured aneurysm and vice-versa. Such a measure
is independent of a specific threshold for classification of an
aneurysm as ruptured or unruptured. Q-Q plots of the distri-
butions for each of the iAUCs were largely similar between
model A and B and the previously trained model [6] (model
C). Quantiles in the middle-upper range were slightly different
between the compared distributions (for identical distribu-
tions, all points would lie on the 45° line, see Fig. 6). Still,
overall, the Q-Q plots indicated a comparable discriminatory
ability of the models for each aneurysm. The models present-
ed in this study did not include variables characterizing the
time-dependent behavior of the aneurysmal flow (e.g., oscil-
latory shear index). Our findings suggest that missing infor-
mation by omitting these parameters can be compensated by
the other variables, resulting in a similar performance.

At the same time, the confidence intervals for the AUCs of
the models were relatively large, indicating that more data
might be needed for a more precise estimation of the models’
performance.

Aneurysms hemodynamics, geometry, and location
contribute to the overall rupture risk

An increased aneurysm rupture risk has previously been asso-
ciated with both a less regular aneurysm shape and an adverse
hemodynamic environment described by higher and more
complex flows [8, 9]. Figures 7 and 8 illustrate these associa-
tions with four aneurysms and relate them to the predictions
based on the three models (model A, B, and the previously
developed model [6], model C). The selected inflow boundary
conditions for the four cases are shown in Fig. 1 in the Suppl.
Material.

Figure 7 shows two example aneurysms from the test data
for which the predicted probabilities were consistent with the
actual rupture status. The aneurysm on the left (case a) is a
ruptured anterior communicating artery (ACOM) aneurysm.
Based on bothmodel A and C, it had a predicted probability of
being ruptured of 0.91. For models B, the predicted probabil-
ities were 0.92 ± 0.01, 0.92 ± 0.01, and 0.92 ± 0.01 when ap-
plying the model to the low, medium, and high-flow data from
that case, respectively (see Table 4). The streamlines, wall
shear stress distribution, and vortex core lines show an in-
creasing and more complex flow for increasing inflows (from
left to right). Despite these changes, the predictions of all
models were similar and consistent with the rupture status.
To assess the contributions of hemodynamics and geometry
to the rupture risk separately, models using only hemodynam-
ic (flow-dependent) and only geometric variables were fitted
based on the training data and evaluated on the four illustrative
test cases. For the ACOM aneurysm, the probabilities of the
hemodynamics-only model ranged between 0.33 and 0.49
(depending on which of the 120 models was evaluated and
for which of the three flow conditions). The geometry-only

Table 3 Number of cases in test data with changes in predicted rupture
status based on the two different models B with largest differences in
predicted probabilities (left column) as well as low vs. high inflows for
a fixed model B (right column)

Threshold Number of cases w/ changed prediction (%)

Different models (flow fixed) Different flows (model fixed)

0.3 28 (11.24) 12 (4.82)

0.5 25 (10.04) 10 (4.02)

0.7 14 (5.62) 2 (0.8)
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model assigned a probability of 0.89. Thus, for this case ge-
ometry seemed to contribute more to the high rupture risk than
the relatively low and simple flows as shown by the WSS
distribution and core lines.

For case b, an unruptured ICA-ophthalmic aneurysm, the
assigned probabilities were less than 0.03 for all models A, B,
and C and the geometry-only model, indicating a low-risk for
this aneurysm, which was consistent with the rupture status.
The maximum probability for the hemodynamic model was
0.18, which was largely higher, but still suggested a low risk.
The aneurysm had a very simple, spherical shape, and overall
low flows (except for a region near the neck), which explains
the low predicted probabilities.

Figure 8 shows two cases for which the predicted proba-
bilities were not in agreement with the rupture status. Case c
was a relatively large middle cerebral artery (MCA)-

bifurcation aneurysm with a simple shape and low predicted
probabilities for models A, B, and C (< 0.16) and the
geometry-only model (0.08) despite being ruptured. Hence,
this case was misclassified by the models, potentially related
to the relatively simple geometry and low-risk location. For
the hemodynamic-only models, the probabilities ranged be-
tween 0.31 and 0.62, with the highest probability when apply-
ing the model to the aneurysm’s high-flow data. Consistently,
the high-flow scenario showed relatively complex flows with
many vortices and large core lines. Hence in this case, the
hemodynamic-only model predicted the rupture status more
accurately than the other ones including geometric, location,
and patient-related information.

The posterior communicating artery (PCOM) aneurysm,
case d, demonstrated an interesting case with high and com-
plex flows as well as an irregular shape, but an unruptured

Fig. 6 Q-Q plots for comparisons
of distributions of iAUCs in test
data of model A vs. model C and
model B vs. model C (for model
B, one of the 120 fitted models
was used for this illustration). For
identical distributions, all circles
would lie on the 45° line

Fig. 7 Streamlines (top), WSS distribution (middle), and vortex core lines (bottom) for low, medium, and high inflow boundary conditions (from left to
right) for a ruptured (left) and an unruptured aneurysm (right) that were correctly classified by the models
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rupture status. In agreement with the hemodynamic and mor-
phological characteristics, all models assigned high predicted
probabilities of > 0.8, the geometry-only model a probability
of 0.81, and for the hemodynamic-only model probabilities
between 0.42 and 0.70. The rupture-like characteristics and
high predicted probabilities thus suggest that case d was a
high-risk aneurysm and potentially close to the event of rup-
ture. Unfortunately, follow-up data of the patient were not
available to assess this assumption.

Overall, the four examples show that for the evaluation of
an aneurysm’s rupture risk, it is important to take different
characteristics into account. At the same time, it is important
to note that the geometry-only and hemodynamic-only model
had a significantly lower performance compared to model A
(AUCs of 0.75, CI [0.69–0.82], and 0.7126 ± 0.0113 vs. 0.82,
p = 0.007 for geometry-only vs. model A). Both “sub-models”
thus yield important information about the contribution of
hemodynamics and morphology to the rupture risk, but in
the end, these separate predictions are less precise than the
overall model so that they should not been used by themselves

for rupture prediction. On the other hand, models B performed
well independent of the selected flow condition for the test
case, indicating that for rupture prediction, the selected flow
conditions for the CFD simulations are not critical for an ac-
curate assessment in terms of predicted probabilities.

Clinical implications

Our results show that for incorporating inter- and intra-patient
cerebral flow-variations into multivariate prediction models
including hemodynamic variables for aneurysm rupture
(status) prediction, two options exist that yield good perfor-
mances. First, variables that capture the changes of hemody-
namics for intra-patient flow variations (“mean response var-
iables”) and the overall behavior for intra- and inter-patient
variations combined (“linearity variables”) can be included
into the model, which is then by definition flow independent.
The flow-independence is a major advantage of this model,
resulting in a single predicted probability that—based on the
model’s performance in the external evaluation of this study—

Fig. 8 Streamlines (top), WSS distribution (middle), and vortex core lines (bottom for low, medium, and high inflow boundary conditions (from left to
right) for a ruptured (left) and an unruptured aneurysm (right) that were incorrectly classified by the models

Table 4 Characteristics of cases illustrated in Figs. 7 and 8. ProbA, ProbB, and ProbC refer to the assigned probabilities bymodel A, B (when applied to
the aneurysm’s low, medium, and high-flow data), and C. Asize, aneurysm size

Case Location Rupture status Asize ProbA ProbB ProbC

Low Medium High

a ACOM R 1.0383 0.9076 0.9151 ± 0.0141 0.9162 ± 0.0132 0.9224 ± 0.0127 0.9121

b ICA-OPH U 0.2510 0.0204 0.0229 ± 0.0029 0.0240 ± 0.0029 0.0251 ± 0.0030 0.0218

c MCA-BIF R 1.4913 0.1402 0.1138 ± 0.0252 0.1267 ± 0.0260 0.1511 ± 0.0253 0.1034

d PCOM U 0.9193 0.8021 0.8052 ± 0.0166 0.8263 ± 0.0171 0.8476 ± 0.0203 0.8050
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accurately reflects the aneurysm rupture status. On the other
hand, this model requires nine CFD simulations for each an-
eurysm and includes variables that are less-intuitive in their
interpretation, which could be disadvantageous for an appli-
cation in the clinic.

The second approach includes random selection of flow-
conditions (within the physiological range) by patient for
model training. Our results suggest that such a model achieves
a good predictive performance independent of the particular
flow that is used for applying the model to a new case.
Importantly, we found that the predicted probabilities did not
change largely for the different inflow boundary conditions
(on average the difference between the probabilities based
on high and low flow conditions was 0.02). Furthermore, for
less than 5% of all test cases, the predicted rupture status
changed based on the flow condition for all three thresholds
that were applied.

In practice, this implies, first, that only one CFD simulation
is needed (although more can be performed and evaluated to
get an idea of the robustness of the predictions) and, second,
patient-specific flow conditions can be applied—if avail-
able—for using the model. The latter has the advantage that
if a physician is interested in the patient’s actual hemodynam-
ics and the patient’s flow has beenmeasured, these data can be
used for the CFD simulations and also for applying the statis-
tical model. Whether such predictions could also be more
precise in the end needs to be assessed in future.
Furthermore, if CFD-data are already available, the model
based on randomly selected flow conditions is applicable as
long as the inflow boundary conditions have been applied
within the physiological range.

When using models B for risk assessment, the predicted
probabilities can change depending onwhich of the repeatedly
fitted models is used as well as on the applied inflow. To
address this aspect, one could use all 120 models and all three
flow conditions to compute the 360 predicted probabilities
and, e.g., assess these probabilities based on boxplots as
shown in Fig. 5 to get a more complete evaluation of the
rupture risk. At the same time, our results indicate that also
just considering one flow condition and mean predicted prob-
abilities from the models might be sufficient given that the
predicted rupture statuses change only for a few cases even
when comparing the most extreme predictions of all models,
and overall similar predicted probabilities for the different
models and flow conditions.

In the end, both approaches for the statistical models
achieved a similar performance. Which of the two is more
suitable in a clinical setting could depend on the physician’s
preference and available resources and data (e.g., patient-
specific flow measurements).

The previously developed model based on unsteady CFD
simulations achieved a good performance in the external data
[7]. However, the effect of varying boundary conditions was

not assessed when evaluating the model. Since the model was
based on time-variant inflows, also the impact of the inflow
waveform on the computed hemodynamics and model predic-
tions should be assessed, which is planned for future work.
Models based on time-variant hemodynamics capture addi-
tional information about the aneurysm hemodynamics, which
could be advantageous for rupture risk assessment. At the
same time, our results suggest that neglecting the time-
dependent flow variations resulting from the cardiac cycle
does not reduce the predictive performance of the model.
For an application in the clinic, such time-independent
(steady) simulations do have the advantages of a largely re-
duced computational time (the nine CFD simulations for each
of the 1820 cases for this study were run in approx. 3 days in
total).

The four exemplary cases presented in Figs. 7 and 8 show
that considering a combination of hemodynamics and mor-
phological information is important for aneurysm rupture as-
sessment. Consistent with the importance of a combination of
variables from different domains, all the fitted models (except
for geometry-/hemodynamics-only models) retained variables
from all of them. In practice, this model-based risk prediction
as well as the assessment of hemodynamics/morphology
could also be combined with a similarity-based approach for
identification of aneurysms with similar hemodynamic, mor-
phological, and anatomical characteristics for a new case (as
described in [7]).

When considering the presented statistical models for an-
eurysm rupture risk assessment, it is important to keep inmind
that these models have been developed using cross-sectional
data. They predict the current aneurysm rupture status rather
than the future rupture risk. However, based on the assump-
tion that rupture-prone aneurysms resemble those that have
already ruptured [6, 25], such a model could also be used for
rupture risk assessment. While previous findings support this
assumption [4], in the end, an evaluation of the models with
longitudinal data is necessary, which is planned for future
work. Irrespective of this limitation, our current study shows
that—once evaluated or re-trained with longitudinal data—the
problem of patient-specific inflow boundary conditions can be
addressed for statistical models for aneurysm rupture risk
assessment.

Conclusion

Statistical models including hemodynamic variables obtained
from CFD simulations for aneurysm rupture prediction can
achieve a good predictive performance when incorporating
the influence of inter- and intra-patient variations in cerebral
blood flow on the characterized hemodynamics into the mod-
el. These models can be applied to CFD data independent of
the specific inflow boundary conditions resulting—depending
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on the approach—in similar or flow-independent predicted
probabilities. For aneurysm rupture risk assessment, it is im-
portant to take different aspects, i.e., hemodynamics, mor-
phology, and aneurysm location into account.
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